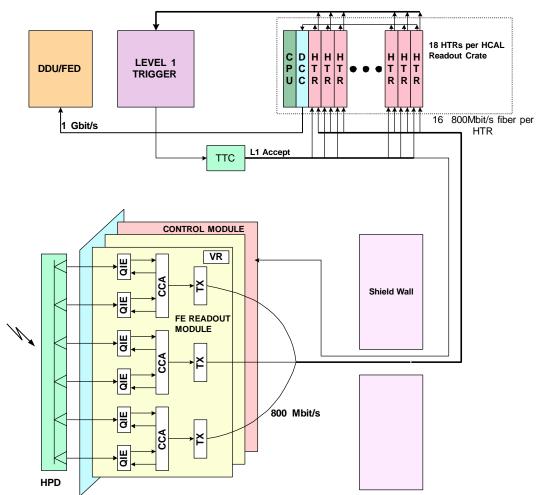


### **HCAL Front End Electronics**

C A L


#### **Front End Status**

June 2001 CMS Week



### **FE/DAQ Readout**

Н С А





### Pending Issues(1)



#### Do we instrument Layer 0?

- HB, HE RBX design effected
- =>this has stalled HE and HB backplane progress

#### **Dropping Layer 0 results in**

- More elegant RBX design no more HPD-73
- Reduction of channel count and electronics
- Power Savings
- Cost savings of >\$850K



### Pending Issues(2)



#### What is the speed of the optical data link?

- We are examing two possible modes for operating the CERN Gigabit Optical Link (GOL)
  - 800 Mbps G-Link Protocol
  - 1600 Mbps 8B/10B Protocol
- Baseline is 800Mbps
- Efforts under way at Fermi and Maryland to study faster link

The link will be the subject of a proposed meeting at Fermilab in a few weeks to understand possible schedule impacts and manpower requirements



#### **Current Work**

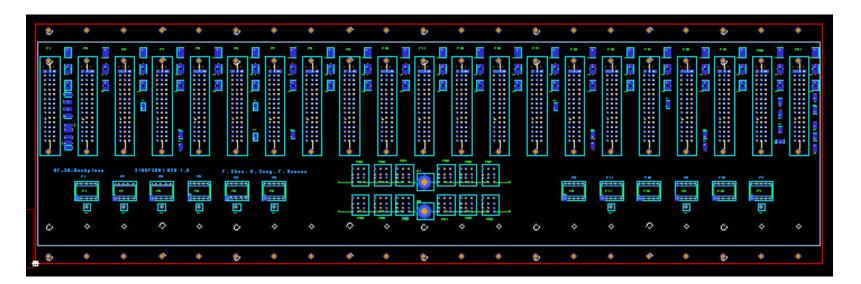


# We have picked a 3U x 160mm format to begin prototype work.

#### This work includes:

- The design and production of a 21 slot 3U custom backplane
- The design of a clock distribution card which utilizes a TTCrx test board
- The design of a two channel FE card which will use bare die QIEs
- The design of an RBXbus interface card which can be controlled through a PC

T. Shaw Electronics 5



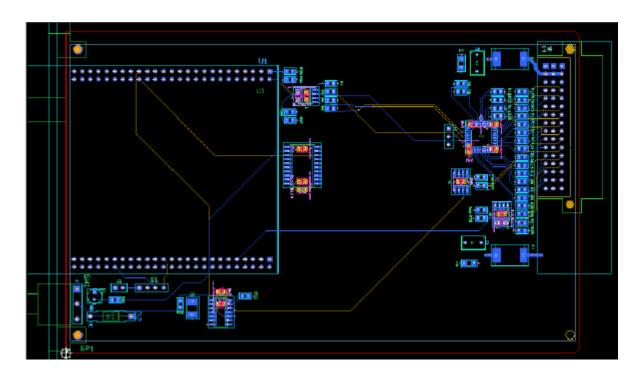

### 3U Backplane



# 3U backplane is being produced to facilitate prototype work- easy to work with and duplicate

#### Candidate for HF





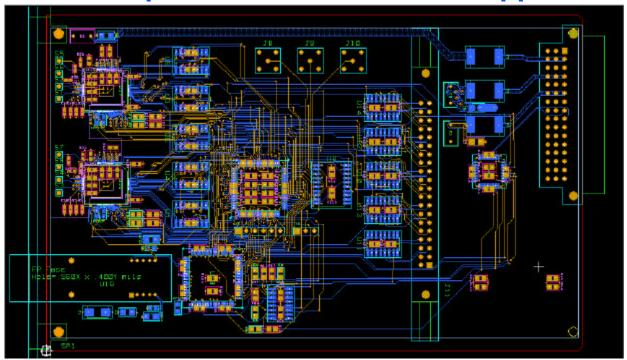

### **Timing Card**



#### **Timing Card**

 Will distribute TTCrx clock via LVPECL(note change from LVDS due to rad study results)





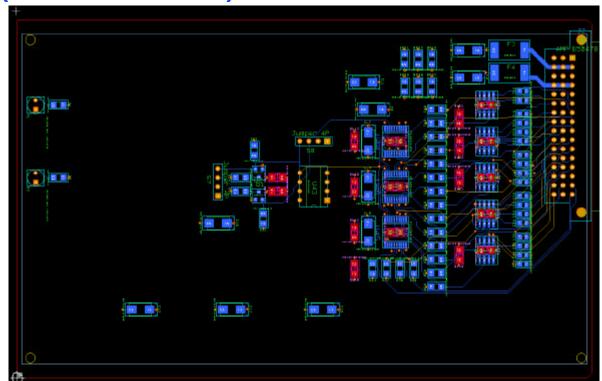

#### FE Proto Ver 1.0

H C C A L

#### **FE Prototype Card**

- Will instrument two QIE channels (bare die)
- Data output via G-Link or LVDS copper link






#### **RBXbus Interface Card**

H C A L

#### **RBXbus Interface Card**

• Interface between PC and backplane RBXbus (serial download)

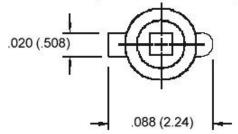




### VCSEL Selection(1)

C A L

Н

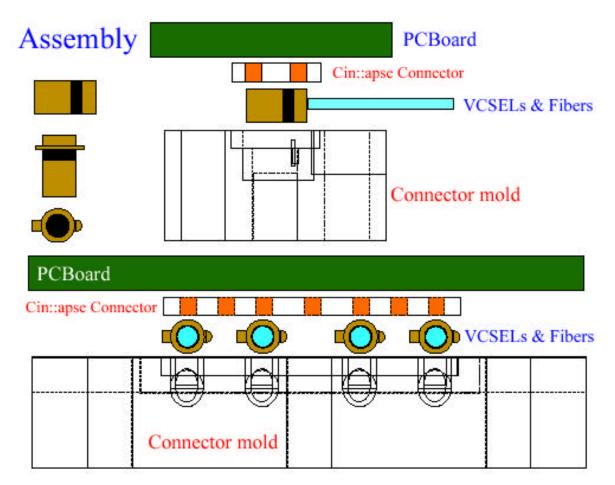

#### HFE4086-001

VCSEL Components, Data Communications, Flat Window Pillpack, Unattenuate optics, no back monitor photodiode

#### **FEATURES**

- Designed for drive currents between 5 mA and 15 mA
- Optimized for low dependence of electrical properties over temperature
- High speed > 1 Ghz
- Miniature flat-window, pill-pack package

#### MOUNTING DIMENSIONS (for reference only): in./(mm)








### VCSEL Packaging(1)

H C A





# VCSEL Selection/Packaging(2)



#### Honeywell

Fiber Optic LAN Components

HFE419x-521

LC Connectorized High Speed VCSEL 2.5 Gbps

Preliminary

#### FEATURES

- Designed for small form factor transceivers
- Prealigned connector sleeve that is compatible with the LC standard (LC is a trademark of Lucent Technologies)
- · Designed for drive currents
- Optimized for low dependence of electrical properties over temperature
- High speed ≥1 GHz
- Two different laser/ photodiode polarities
- · Attenuating coating
- · Packaged with a photodetector



The HFE419x-521 is a high-performance 850 nm VCSEL (Vertical Cavity Surface-Emitting Laser) packaged for high-speed data communications. This product combines all the performance advantages of the VCSEL with a custom designed power monitor diode. The power monitor diode can be used with appropriate feedback control circuitry to set a maximum power level for each VCSEL. In addition, built-in power attenuation reduces the effective slope efficiency. These combined features simplify design for high data rate communication and eye safety.



### **Power Consumption**

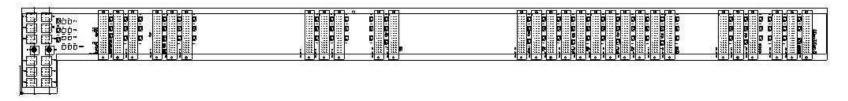
C A L

Н

#### Power Consumption – NOTE that this is with Layer 0 instrumentation

HB - 298 W HE - 205 W HO+/- - 135 W HO-0 - 189 W 23A@6.5V 17A@6.5V 10A@6.5V 16A@6.5V 33A@4.5V 21A@4.5V 21A@4.5V

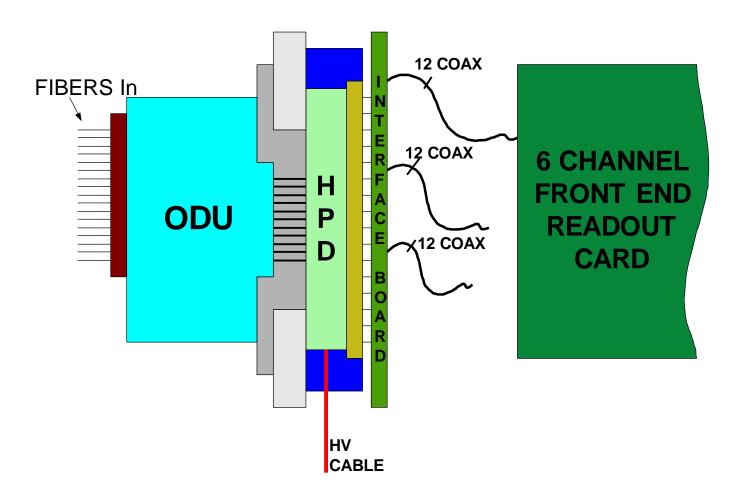
|             |            | (            | CURRENT   | and POWER   | at BOA  | RD LEVEL |       |            |      |       |          |
|-------------|------------|--------------|-----------|-------------|---------|----------|-------|------------|------|-------|----------|
| FE Boards   | QTY/BRD    |              |           | POWER CON   | NSUPTIC | N N      |       | IDLING CUR | RENT |       | TOTAL    |
|             |            | VOLTAGE      | 5         | 5           | 2.5     | 3.3      | 5     | 5          | 2.5  | 3.3   |          |
| Chips       |            |              |           |             |         |          |       |            |      |       |          |
| QIE         | 6          |              | 0.2       | 0.4         |         |          |       |            |      |       |          |
| CCA         | 3          |              |           |             |         | 0.3      |       |            |      |       |          |
| Serializer  | 3          |              |           |             | 0.5     |          |       |            |      |       |          |
| LV regulate | 3          |              |           |             |         |          | 0.025 | 0.025      |      | 0.025 |          |
| Current / B | oard       |              | 0.265     | 0.505       |         | 0.897727 |       |            |      |       |          |
| Total Powe  | er / Board |              |           |             |         |          |       |            |      |       | 9.044773 |
| Calibration | n Module   | (There are t | wo boards | per module) |         |          |       |            |      |       |          |
|             |            | VOLTAGE      | 5         | 5           | 2.5     | 3.3      | 5     | 5          | 2.5  | 3.3   |          |
| Chips       |            |              |           |             |         |          |       |            |      |       |          |
| QIE         | 3          |              | 0.2       | 0.4         |         |          |       |            |      |       |          |
| CCA         | 3          |              |           |             |         | 0.3      |       |            |      |       |          |
| Serializer  | 2          |              |           |             | 0.5     |          |       |            |      |       |          |
| LV/ regulat | 3          |              |           |             |         |          | 0.025 | 0.025      |      | 0.025 |          |
| LV regulate | 3          |              |           |             |         |          | 0.025 | 0.025      |      | 0.025 |          |
| Current / M | lodule     |              | 0.145     | 0.265       |         | 0.697727 |       |            |      |       |          |
| Total Powe  | r / Module |              |           |             |         |          |       |            |      |       | 5.804773 |
| ССМ         |            |              |           |             |         |          |       |            |      |       |          |
|             |            | VOLTAGE      |           |             |         | 3.3      |       |            |      |       |          |
| Chips       |            |              |           |             |         | 5        |       |            |      |       |          |
| LV regulato | ors        |              |           |             |         |          |       |            |      |       |          |
| Current / B | oard       |              |           |             |         | 1.515152 |       |            |      |       |          |
| Total Powe  |            |              |           |             |         | 1.010102 |       |            |      |       | 6.818182 |




### **HB Backplane Function**



#### **Backplane**


- ~87 CM LONG
- Provides Power
- Distributes 40 MHz Clock (3 load max)
- Provides path for RBXbus (serial communication bus)
- Temperature feedback



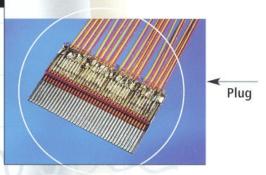


### Readout Module Overview





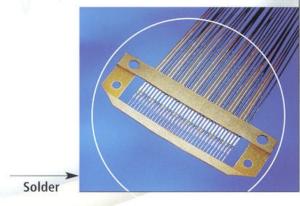



### Signal Cable Candidates (1)

H C A L

#### PICO-FLEX®

#### OR USE PICO-FLEX:


- Mounted in a ZIF connector surface mounted on a PCB.
- Available in 0,5 mm pitch (0,019").
- Compatible with PICO-COAX® AWG 40 to 46 (50 and 100 pF/m, 15 and 30 pF/ft).
  - Custom designed versions available on request.



#### PICO-WELD®

#### USE PICO-WELD®:

- Solders directly to PC board.
- Maintains alignment of the PICO-COAX® at a constant pitch.
- Hot bar system soldering.
- Available in 32 positions pitch 0,635 mm (0,025").
- Compatible with AWG 40 and 42 (50 and 100 pF/m, 15 and 30 pF/ft).
- Other constructions available on request

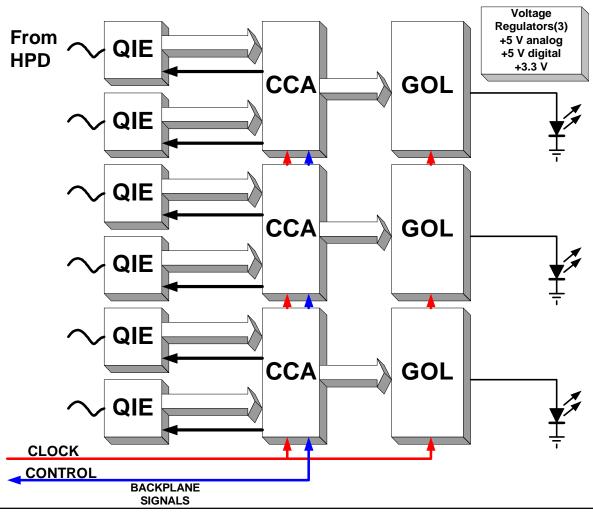




### Signal Cable Candidates (2)

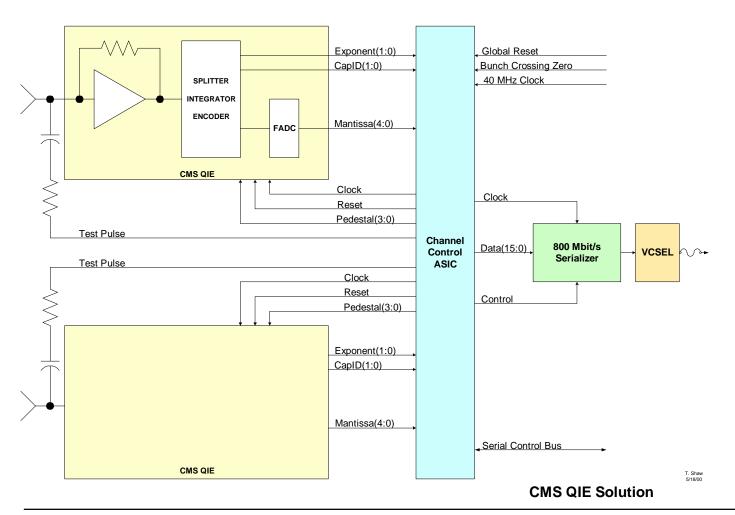





0.5 mm pitch

Cables studies will be made when we receive the first QIE in June




### **Block Diagram of FE Card**

C A





### **FE Channels**





### **QIE Description**

```
C A L
```

Н



#### **Charge Integrator Encoder**

```
4 stage pipelined device (25ns per stage)
```

charge collection

settling

readout

reset

Inverting (HPDs) and Non-inverting (PMTs) Inputs

Internal non-linear Flash ADC

#### Outputs

5 bit mantissa

2 bit range exponent

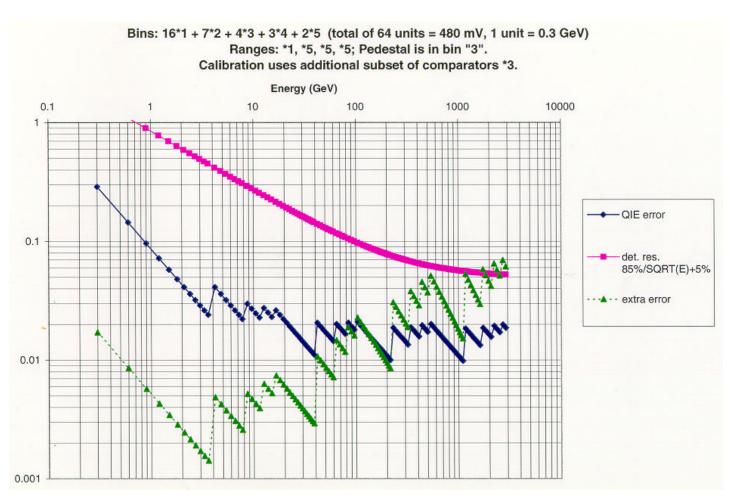
2 bit Cap ID



### **QIE Specification**



#### **QIE Design Specifications**


- Clock > 40 MHz
- Must have inverting and non-inverting inputs
- Charge sensitivity of lowest range 1fC/LSB
  - In Calibration Mode 1/3 fC/LSB
- Maximum Charge 9670 fC/25ns
- 4500 electrons rms noise
- FADC Differential Non-Linearity < .05 LSBs</li>

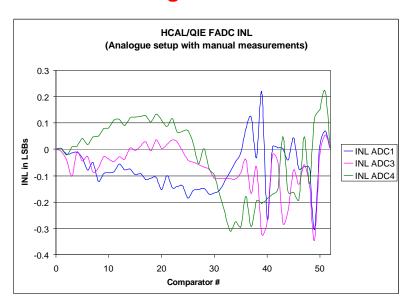
T. Shaw Electronics 21 CMS Week - June. 2001

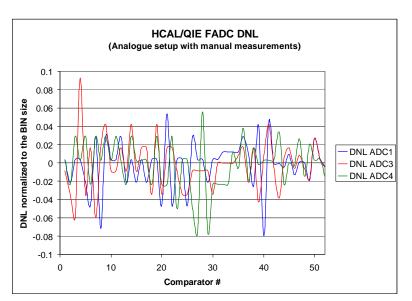


### **FLASH ADC Quantization**

C A



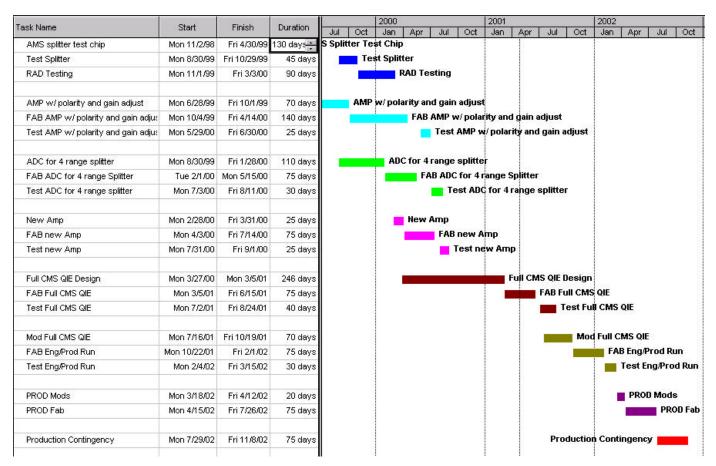




#### **QIE Status**

H C A L

#### **QIE ASIC**

- Current splitter design submitted and tested
- Input amplifier with polarity and gain adjust submitted and tested
- Non-linear Flash ADC design submitted and tested
- Full design submitted back mid to late June '01








#### **QIE Schedule**

H C A L



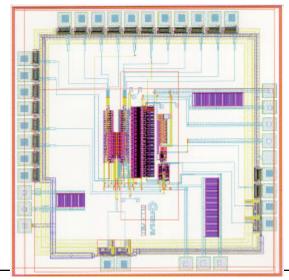


#### **Channel Control ASIC**

H C C A L

The CCA provides the following functions:

- The processing and synchronization of data from two QIEs,
- The provision of phase-adjusted QIE clocking signals to run the QIE charge integrator and Flash ADC,
- Checking of the accuracy of the Capacitor IDs, the Cap IDs from different QIEs should be in synchronization,
- The ability to force the QIE to use a given range,
- The ability to set Pedestal DAC values,
- The ability to issue a test pulse trigger,
- The provision of event synchronization checks a crossing counter will be implemented and checked for accuracy with every beam turn marker,
- The ability to send a known pattern to the serial optic link,
- The ability to "reset" the QIE at a known and determined time,
- And, the ability to send and report on any detected errors at a known and determined time.



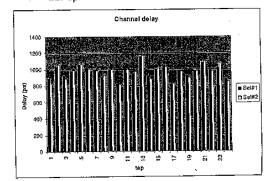

#### **CCA Status**



#### **Channel Control ASIC**

- DLL for timing control submitted and tested
- 1ns multiplexer design submitted and tested
- Serial Interface design submitted and tested
- Full design will be submitted at end of June




Measured delays vs. tap

972p Average delay:

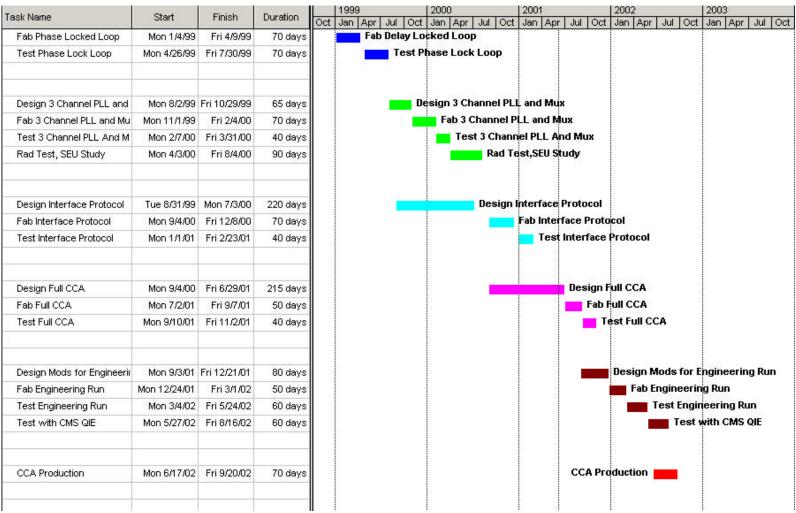
810p

1170p Max delay:

Min delay:



STD: 77ps


T. Shaw

Electronics 26



#### **CCA Schedule**

H C A L





### GOL Design Specifications



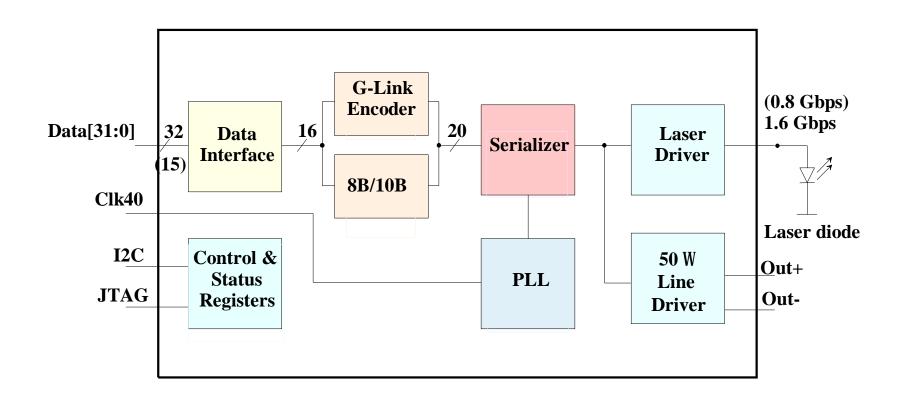
#### Synchronous (constant latency)

#### **Transmission speed**

- fast: 1.6 Gbps , 32 bit data input @ 40 MHz
- slow: 0.8 Gbps , 16 bit data input @ 40 MHz

#### Two encoding schemes

- G-Link
- Fiber channel (8B/10B)


#### Interfaces for control and status registers

- 12C
- JTAG



# Gigabit link (G-Link, 8B/10B optional)







### **GOL Radiation hardness**

C A L

Deep submicron (0.25 um) CMOS Enclosed CMOS transistors

Triple voting in state machines
Up-sizing of PLL components
Auto-error correction in Config. registers

### Single Event Upsets

#### Can we extrapolate for LHC?

| CMS<br>Environment              | Pixel<br>R = 4 – 20cm | Endcap ECAL<br>R = 50 - 130cm | Tracker<br>R = 65-120cm | Cavern<br>R = 700 - 1200cm |
|---------------------------------|-----------------------|-------------------------------|-------------------------|----------------------------|
| Error/(chip<br>hour)            | 1.4 10 <sup>-2</sup>  | 1.9 10-4                      | 8.4 10 <sup>-5</sup>    | 3.1 10 <sup>-8</sup>       |
| #chips for one error each hour! | 71                    | 5.3K                          | 12K                     | 32M                        |



#### **GOL Status**

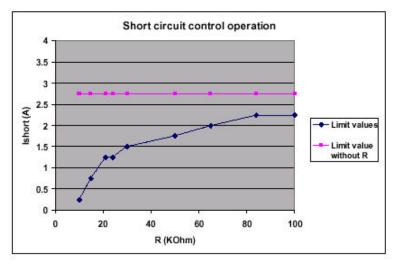
H C A L

- Bit error rate test in the 800Mbit/s G-Link mode: 20 hours error free transmission (external laser driver).
- Bit error rate test in the 1.6Gbit/s 8B/10B mode: 13 hours error free transmission (external laser driver).
- I2C interface successfully tested.
- JTAG interface successfully tested.
- Need to understand and fix jitter problem on internal laser driver. This will be fixed in the next submission (April '01).
- We are awaiting promised packaged parts (and waiting.....)



### Rad Tolerant Voltage Regulator




Developed by ST Microelectronics Specified by CERN RD49

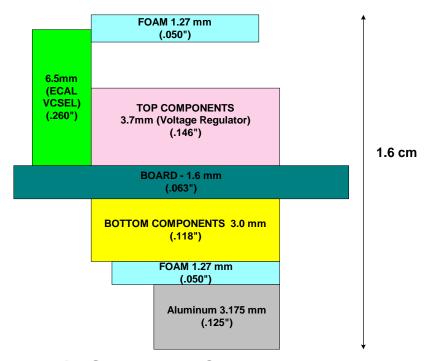
Shown to be Rad Hard

**Presently fixing overvoltage protection** 

**Pre-preduction parts due June 2001??** 

**Production parts late 2001??** 



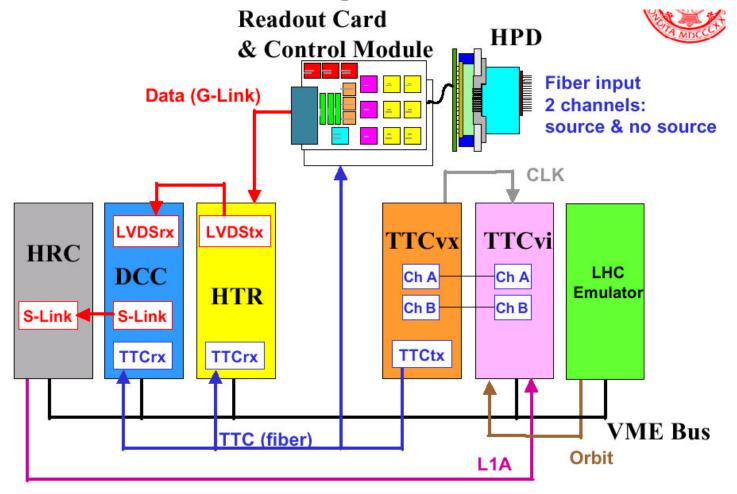

**Fig. 7**: Tuning of the maximum output current in a 2<sup>nd</sup> edition prototype regulator (version 2.5 V).



### Readout Card Component Height



Goal is 1.6 cm stack




**Geometric Space For Components** 



# Plan for FE/HTR Integration







### **Summary**



# QIE Tests begin this month FE/DAQ integration planned for this fall

- 2 channel FE card
  - 2 QIEs
  - Commercial G-Link (@800 Mb/s)
- 6U HTR card
- 9U DCC module

#### Next – ready for summer 2002 test beam

- 6 channel FE card goals
  - 6 QIEs
  - 3 Rad hard Voltage Regulators
  - 2 GOLs (8B/10B Encoding @1.6Gb/s)
  - Custom VCSEL package
  - 3 CCAs